5.3 减少全局内存访问
使用共享内存的主要原因之一是要缓存片上的数据,从而减少核函数中全局内存访问的次数。
在本节中,将重新使用第三章的并行归约核函数,但是这里使用共享内存作为可编程管理缓存以减少全局内存的访问。
5.3.1 使用共享内存的并行归约
先看一下第3章中介绍过该函数reduceGmem
并行归约只使用全局内存。核函数如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
| __global__ void reduceGmem(int *g_idata, int *g_odata, unsigned int n) { unsigned int tid = threadIdx.x; int *idata = g_idata + blockIdx.x * blockDim.x;
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= n) return;
if (blockDim.x >= 1024 && tid < 512) idata[tid] += idata[tid + 512];
__syncthreads();
if (blockDim.x >= 512 && tid < 256) idata[tid] += idata[tid + 256];
__syncthreads();
if (blockDim.x >= 256 && tid < 128) idata[tid] += idata[tid + 128];
__syncthreads();
if (blockDim.x >= 128 && tid < 64) idata[tid] += idata[tid + 64];
__syncthreads();
if (tid < 32) { volatile int *vsmem = idata; vsmem[tid] += vsmem[tid + 32]; vsmem[tid] += vsmem[tid + 16]; vsmem[tid] += vsmem[tid + 8]; vsmem[tid] += vsmem[tid + 4]; vsmem[tid] += vsmem[tid + 2]; vsmem[tid] += vsmem[tid + 1]; }
if (tid == 0) g_odata[blockIdx.x] = idata[0]; }
|
下面使用共享内存的版本,reduceSmem
函数没有使
用全局内存中的输入数组子集来执行原地归约,而是使用了共享内存数组smem
。核函数如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
| __global__ void reduceSmem(int *g_idata, int *g_odata, unsigned int n) { __shared__ int smem[DIM];
unsigned int tid = threadIdx.x;
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= n) return;
int *idata = g_idata + blockIdx.x * blockDim.x;
smem[tid] = idata[tid]; __syncthreads();
if (blockDim.x >= 1024 && tid < 512) smem[tid] += smem[tid + 512];
__syncthreads();
if (blockDim.x >= 512 && tid < 256) smem[tid] += smem[tid + 256];
__syncthreads();
if (blockDim.x >= 256 && tid < 128) smem[tid] += smem[tid + 128];
__syncthreads();
if (blockDim.x >= 128 && tid < 64) smem[tid] += smem[tid + 64];
__syncthreads();
if (tid < 32) { volatile int *vsmem = smem; vsmem[tid] += vsmem[tid + 32]; vsmem[tid] += vsmem[tid + 16]; vsmem[tid] += vsmem[tid + 8]; vsmem[tid] += vsmem[tid + 4]; vsmem[tid] += vsmem[tid + 2]; vsmem[tid] += vsmem[tid + 1]; }
if (tid == 0) g_odata[blockIdx.x] = smem[0]; }
|
为了对比两者的区别截图如下
使用nvprof
查看两个的运行时间
1 2 3 4 5 6 7 8 9 10
| $ sudo nvprof ./reduceInteger ..... ==287535== Profiling result: Type Time(%) Time Calls Avg Min Max Name GPU activities: 71.41% 15.761ms 8 1.9702ms 1.7954ms 2.4715ms [CUDA memcpy HtoD] 7.85% 1.7324ms 1 1.7324ms 1.7324ms 1.7324ms reduceNeighboredGmem(int*, int*, unsigned int) 7.12% 1.5715ms 1 1.5715ms 1.5715ms 1.5715ms reduceNeighboredSmem(int*, int*, unsigned int) 4.67% 1.0304ms 1 1.0304ms 1.0304ms 1.0304ms reduceGmem(int*, int*, unsigned int) 2.95% 651.65us 1 651.65us 651.65us 651.65us reduceSmem(int*, int*, unsigned int)
|
查看全局内存的加载和存储事务数,可以看到使用共享内存减少了全局内存的加载和存储事务数,使用共享内存明显减少了全局内存访问。
1 2 3 4 5 6 7 8 9 10 11 12
| $ sudo nvprof --metrics gld_transactions,gst_transactions ./reduceInteger
Invocations Metric Name Metric Description Min Max Avg Device "Quadro P2000 (0)" Kernel: reduceSmem(int*, int*, unsigned int) 1 gld_transactions Global Load Transactions 2097154 2097154 2097154 1 gst_transactions Global Store Transactions 32768 32768 32768
Kernel: reduceGmem(int*, int*, unsigned int) 1 gld_transactions Global Load Transactions 8519682 8519682 8519682 1 gst_transactions Global Store Transactions 1081344 1081344 1081344
|
5.3.2 使用展开的并行归约
在前面的核函数中,每个线程块处理一个数据块。在第3章中,可以通过一次运行多个I/O操作,展开线程块来提高内核性能。以下内核展开了4个线程块,即每个线程处理来自于4个数据块的数据元素。通过展开,以下优势是可预期的:
- 通过在每个线程中提供更多的并行I/O,增加全局内存的吞吐量
- 全局内存存储事务减少了1/4
核函数的代码如下:实际就是展开规约的共享内存版本代码。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
| __global__ void reduceSmemUnroll(int *g_idata, int *g_odata, unsigned int n) { __shared__ int smem[DIM];
unsigned int tid = threadIdx.x;
unsigned int idx = blockIdx.x * blockDim.x * 4 + threadIdx.x;
int tmpSum = 0;
if (idx < n) { int a1, a2, a3, a4; a1 = a2 = a3 = a4 = 0; a1 = g_idata[idx]; if (idx + blockDim.x < n) a2 = g_idata[idx + blockDim.x]; if (idx + 2 * blockDim.x < n) a3 = g_idata[idx + 2 * blockDim.x]; if (idx + 3 * blockDim.x < n) a4 = g_idata[idx + 3 * blockDim.x]; tmpSum = a1 + a2 + a3 + a4; }
smem[tid] = tmpSum; __syncthreads();
if (blockDim.x >= 1024 && tid < 512) smem[tid] += smem[tid + 512];
__syncthreads();
if (blockDim.x >= 512 && tid < 256) smem[tid] += smem[tid + 256];
__syncthreads();
if (blockDim.x >= 256 && tid < 128) smem[tid] += smem[tid + 128];
__syncthreads();
if (blockDim.x >= 128 && tid < 64) smem[tid] += smem[tid + 64];
__syncthreads();
if (tid < 32) { volatile int *vsmem = smem; vsmem[tid] += vsmem[tid + 32]; vsmem[tid] += vsmem[tid + 16]; vsmem[tid] += vsmem[tid + 8]; vsmem[tid] += vsmem[tid + 4]; vsmem[tid] += vsmem[tid + 2]; vsmem[tid] += vsmem[tid + 1]; }
if (tid == 0) g_odata[blockIdx.x] = smem[0]; }
|
测试时间如下
1 2 3 4 5
| $ sudo nvprof ./reduceInteger 4.48% 1.0309ms 1 1.0309ms 1.0309ms 1.0309ms reduceGmem(int*, int*, unsigned int) 2.83% 651.37us 1 651.37us 651.37us 651.37us reduceSmem(int*, int*, unsigned int) 1.15% 264.61us 1 264.61us 264.61us 264.61us reduceGmemUnroll(int*, int*, unsigned int)
|
5.3.3 使用动态共享内存的并行归约
并行归约核函数还可以使用动态共享内存来执行,通过以下声明,在reduceSmem-Unroll中用动态共享内存取代静态共享内存:
1
| extern __shared__ int smem[];
|
启动核函数时,必须指定待动态分配的共享内存数量:
1 2
| reduceSmemUnrollDyn<<<grid.x / 4, block, DIM*sizeof(int)>>>(d_idata, d_odata, size);
|
如果用nvprof计算核函数的运行时间,动态分配共享内存实现的核函数和用静态分配共享内存实现的核函数之间没有显著的差异
5.3.4 有效带宽
有效带宽是在核函数的完整执行时间内I/O的数量(以字节为单位)