1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
| [W] --workspace is deprecated and will be removed in Polygraphy 0.48.0. Use --pool-limit workspace:1000000000 instead. [I] RUNNING | Command: /home/zhaoyidong/anaconda3/envs/zyd_env/bin/polygraphy run model-04-01.onnx --onnxrt --trt --workspace 1000000000 --atol 1e-3 --rtol 1e-3 --verbose --trt-min-shapes tensor0:[1,3,64,64] --trt-opt-shapes tensor0:[4,3,64,64] --trt-max-shapes tensor0:[16,3,64,64] --input-shapes tensor0:[4,3,64,64] [V] Loaded Module: polygraphy | Version: 0.47.1 | Path: ['/home/zhaoyidong/anaconda3/envs/zyd_env/lib/python3.8/site-packages/polygraphy'] [V] Loaded extension modules: [] [V] Loaded Module: tensorrt | Version: 8.6.0 | Path: ['/home/zhaoyidong/anaconda3/envs/zyd_env/lib/python3.8/site-packages/tensorrt'] [I] Will generate inference input data according to provided TensorMetadata: {tensor0 [shape=(4, 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:01 | Activating and starting inference [V] Loaded Module: onnxruntime | Version: 1.19.0 | Path: ['/home/zhaoyidong/.local/lib/python3.8/site-packages/onnxruntime'] [I] Creating ONNX-Runtime Inference Session with providers: ['CPUExecutionProvider'] [V] Loaded Module: numpy | Version: 1.24.4 | Path: ['/home/zhaoyidong/.local/lib/python3.8/site-packages/numpy'] [V] Loading inputs from data loader [V] Generating data using numpy seed: 1 [V] Input tensor: tensor0 | Generating input data in range: [0.0, 1.0] [I] onnxrt-runner-N0-10/24/24-09:44:01 ---- Inference Input(s) ---- {tensor0 [dtype=float32, shape=(4, 3, 64, 64)]} [V] onnxrt-runner-N0-10/24/24-09:44:01 | Input metadata is: {tensor0 [dtype=float32, shape=('B', 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:01 ---- Inference Output(s) ---- {tensor3 [dtype=float32, shape=(4, 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:01 | Completed 1 iteration(s) in 0.2253 ms | Average inference time: 0.2253 ms. [I] trt-runner-N0-10/24/24-09:44:01 | Activating and starting inference [V] [MemUsageChange] Init CUDA: CPU +14, GPU +0, now: CPU 32, GPU 848 (MiB) [V] [MemUsageChange] Init builder kernel library: CPU +1434, GPU +266, now: CPU 1542, GPU 1114 (MiB) [V] ---------------------------------------------------------------- [V] Input filename: /media/byd/disk38/media_zhaoyidong/test/OnnxGraphSurgeon/model-04-01.onnx [V] ONNX IR version: 0.0.9 [V] Opset version: 11 [V] Producer name: [V] Producer version: [V] Domain: [V] Model version: 0 [V] Doc string: [V] ---------------------------------------------------------------- [V] Setting TensorRT Optimization Profiles [V] Input tensor: tensor0 (dtype=DataType.FLOAT, shape=(-1, 3, 64, 64)) | Setting input tensor shapes to: (min=[1, 3, 64, 64], opt=[4, 3, 64, 64], max=[16, 3, 64, 64]) [I] Configuring with profiles: [Profile().add('tensor0', min=[1, 3, 64, 64], opt=[4, 3, 64, 64], max=[16, 3, 64, 64])] [I] Building engine with configuration: Flags | [] Engine Capability | EngineCapability.DEFAULT Memory Pools | [WORKSPACE: 953.67 MiB, TACTIC_DRAM: 24209.12 MiB] Tactic Sources | [CUBLAS, CUBLAS_LT, CUDNN, EDGE_MASK_CONVOLUTIONS, JIT_CONVOLUTIONS] Profiling Verbosity | ProfilingVerbosity.DETAILED Preview Features | [FASTER_DYNAMIC_SHAPES_0805, DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805] [V] Graph optimization time: 0.000319935 seconds. [V] Global timing cache in use. Profiling results in this builder pass will be stored. [V] Detected 1 inputs and 1 output network tensors. [V] Total Host Persistent Memory: 0 [V] Total Device Persistent Memory: 0 [V] Total Scratch Memory: 0 [V] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 0 MiB, GPU 8 MiB [V] [BlockAssignment] Started assigning block shifts. This will take 2 steps to complete. [V] [BlockAssignment] Algorithm ShiftNTopDown took 0.025494ms to assign 2 blocks to 2 nodes requiring 1024 bytes. [V] Total Activation Memory: 1024 [V] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +0, GPU +4, now: CPU 0, GPU 4 (MiB) [I] Finished engine building in 0.493 seconds [V] Loaded engine size: 0 MiB [V] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +0, now: CPU 0, GPU 0 (MiB) [V] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +0, now: CPU 0, GPU 0 (MiB) [V] Found candidate CUDA libraries: ['/usr/local/cuda/lib64/libcudart.so', '/usr/local/cuda/lib64/libcudart.so.11.0', '/usr/local/cuda/lib64/libcudart.so.11.4.43'] [I] trt-runner-N0-10/24/24-09:44:01 ---- Inference Input(s) ---- {tensor0 [dtype=float32, shape=(4, 3, 64, 64)]} [V] trt-runner-N0-10/24/24-09:44:01 | Input metadata is: {tensor0 [dtype=float32, shape=(-1, 3, 64, 64)]} [I] trt-runner-N0-10/24/24-09:44:01 ---- Inference Output(s) ---- {tensor3 [dtype=float32, shape=(4, 3, 64, 64)]} [I] trt-runner-N0-10/24/24-09:44:01 | Completed 1 iteration(s) in 0.2902 ms | Average inference time: 0.2902 ms. [V] Successfully ran: ['onnxrt-runner-N0-10/24/24-09:44:01', 'trt-runner-N0-10/24/24-09:44:01'] [I] Accuracy Comparison | onnxrt-runner-N0-10/24/24-09:44:01 vs. trt-runner-N0-10/24/24-09:44:01 [I] Comparing Output: 'tensor3' (dtype=float32, shape=(4, 3, 64, 64)) with 'tensor3' (dtype=float32, shape=(4, 3, 64, 64)) [I] Tolerance: [abs=0.001, rel=0.001] | Checking elemwise error [I] onnxrt-runner-N0-10/24/24-09:44:01: tensor3 | Stats: mean=1.4995, std-dev=0.2893, var=0.083692, median=1.502, min=1 at (3, 2, 35, 12), max=2 at (3, 0, 30, 21), avg-magnitude=1.4995 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (1 , 1.1) | 4986 | ####################################### (1.1, 1.2) | 4912 | ####################################### (1.2, 1.3) | 4978 | ####################################### (1.3, 1.4) | 4840 | ###################################### (1.4, 1.5) | 4785 | ###################################### (1.5, 1.6) | 5011 | ######################################## (1.6, 1.7) | 4908 | ####################################### (1.7, 1.8) | 4915 | ####################################### (1.8, 1.9) | 4899 | ####################################### (1.9, 2 ) | 4918 | ####################################### [I] trt-runner-N0-10/24/24-09:44:01: tensor3 | Stats: mean=1.4995, std-dev=0.2893, var=0.083692, median=1.502, min=1 at (3, 2, 35, 12), max=2 at (3, 0, 30, 21), avg-magnitude=1.4995 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (1 , 1.1) | 4986 | ####################################### (1.1, 1.2) | 4912 | ####################################### (1.2, 1.3) | 4978 | ####################################### (1.3, 1.4) | 4840 | ###################################### (1.4, 1.5) | 4785 | ###################################### (1.5, 1.6) | 5011 | ######################################## (1.6, 1.7) | 4908 | ####################################### (1.7, 1.8) | 4915 | ####################################### (1.8, 1.9) | 4899 | ####################################### (1.9, 2 ) | 4918 | ####################################### [I] Error Metrics: tensor3 [I] Minimum Required Tolerance: elemwise error | [abs=0] OR [rel=0] (requirements may be lower if both abs/rel tolerances are set) [I] Absolute Difference | Stats: mean=0, std-dev=0, var=0, median=0, min=0 at (0, 0, 0, 0), max=0 at (0, 0, 0, 0), avg-magnitude=0 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-0.5, -0.4) | 0 | (-0.4, -0.3) | 0 | (-0.3, -0.2) | 0 | (-0.2, -0.1) | 0 | (-0.1, 0 ) | 0 | (0 , 0.1 ) | 49152 | ######################################## (0.1 , 0.2 ) | 0 | (0.2 , 0.3 ) | 0 | (0.3 , 0.4 ) | 0 | (0.4 , 0.5 ) | 0 | [I] Relative Difference | Stats: mean=0, std-dev=0, var=0, median=0, min=0 at (0, 0, 0, 0), max=0 at (0, 0, 0, 0), avg-magnitude=0 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-0.5, -0.4) | 0 | (-0.4, -0.3) | 0 | (-0.3, -0.2) | 0 | (-0.2, -0.1) | 0 | (-0.1, 0 ) | 0 | (0 , 0.1 ) | 49152 | ######################################## (0.1 , 0.2 ) | 0 | (0.2 , 0.3 ) | 0 | (0.3 , 0.4 ) | 0 | (0.4 , 0.5 ) | 0 | [I] PASSED | Output: 'tensor3' | Difference is within tolerance (rel=0.001, abs=0.001) [I] PASSED | All outputs matched | Outputs: ['tensor3'] [I] Accuracy Summary | onnxrt-runner-N0-10/24/24-09:44:01 vs. trt-runner-N0-10/24/24-09:44:01 | Passed: 1/1 iterations | Pass Rate: 100.0 [I] PASSED | Runtime: 4.800s | Command: /home/zhaoyidong/anaconda3/envs/zyd_env/bin/polygraphy run model-04-01.onnx --onnxrt --trt --workspace 1000000000 --atol 1e-3 --rtol 1e-3 --verbose --trt-min-shapes tensor0:[1,3,64,64] --trt-opt-shapes tensor0:[4,3,64,64] --trt-max-shapes tensor0:[16,3,64,64] --input-shapes tensor0:[4,3,64,64] [W] --workspace is deprecated and will be removed in Polygraphy 0.48.0. Use --pool-limit workspace:1000000000 instead. [I] RUNNING | Command: /home/zhaoyidong/anaconda3/envs/zyd_env/bin/polygraphy run model-04-02.onnx --onnxrt --trt --workspace 1000000000 --atol 1e-3 --rtol 1e-3 --verbose --trt-min-shapes tensor0:[1,3,64,64] --trt-opt-shapes tensor0:[4,3,64,64] --trt-max-shapes tensor0:[16,3,64,64] --input-shapes tensor0:[4,3,64,64] [V] Loaded Module: polygraphy | Version: 0.47.1 | Path: ['/home/zhaoyidong/anaconda3/envs/zyd_env/lib/python3.8/site-packages/polygraphy'] [V] Loaded extension modules: [] [V] Loaded Module: tensorrt | Version: 8.6.0 | Path: ['/home/zhaoyidong/anaconda3/envs/zyd_env/lib/python3.8/site-packages/tensorrt'] [I] Will generate inference input data according to provided TensorMetadata: {tensor0 [shape=(4, 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:06 | Activating and starting inference [V] Loaded Module: onnxruntime | Version: 1.19.0 | Path: ['/home/zhaoyidong/.local/lib/python3.8/site-packages/onnxruntime'] [I] Creating ONNX-Runtime Inference Session with providers: ['CPUExecutionProvider'] [V] Loaded Module: numpy | Version: 1.24.4 | Path: ['/home/zhaoyidong/.local/lib/python3.8/site-packages/numpy'] [V] Loading inputs from data loader [V] Generating data using numpy seed: 1 [V] Input tensor: tensor0 | Generating input data in range: [0.0, 1.0] [I] onnxrt-runner-N0-10/24/24-09:44:06 ---- Inference Input(s) ---- {tensor0 [dtype=float32, shape=(4, 3, 64, 64)]} [V] onnxrt-runner-N0-10/24/24-09:44:06 | Input metadata is: {tensor0 [dtype=float32, shape=('B', 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:06 ---- Inference Output(s) ---- {tensor3 [dtype=float32, shape=(4, 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:06 | Completed 1 iteration(s) in 0.2508 ms | Average inference time: 0.2508 ms. [I] trt-runner-N0-10/24/24-09:44:06 | Activating and starting inference [V] [MemUsageChange] Init CUDA: CPU +14, GPU +0, now: CPU 32, GPU 848 (MiB) [V] [MemUsageChange] Init builder kernel library: CPU +1434, GPU +266, now: CPU 1542, GPU 1114 (MiB) [V] ---------------------------------------------------------------- [V] Input filename: /media/byd/disk38/media_zhaoyidong/test/OnnxGraphSurgeon/model-04-02.onnx [V] ONNX IR version: 0.0.9 [V] Opset version: 11 [V] Producer name: [V] Producer version: [V] Domain: [V] Model version: 0 [V] Doc string: [V] ---------------------------------------------------------------- [V] Setting TensorRT Optimization Profiles [V] Input tensor: tensor0 (dtype=DataType.FLOAT, shape=(-1, 3, 64, 64)) | Setting input tensor shapes to: (min=[1, 3, 64, 64], opt=[4, 3, 64, 64], max=[16, 3, 64, 64]) [I] Configuring with profiles: [Profile().add('tensor0', min=[1, 3, 64, 64], opt=[4, 3, 64, 64], max=[16, 3, 64, 64])] [I] Building engine with configuration: Flags | [] Engine Capability | EngineCapability.DEFAULT Memory Pools | [WORKSPACE: 953.67 MiB, TACTIC_DRAM: 24209.12 MiB] Tactic Sources | [CUBLAS, CUBLAS_LT, CUDNN, EDGE_MASK_CONVOLUTIONS, JIT_CONVOLUTIONS] Profiling Verbosity | ProfilingVerbosity.DETAILED Preview Features | [FASTER_DYNAMIC_SHAPES_0805, DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805] [V] Graph optimization time: 0.000436975 seconds. [V] Global timing cache in use. Profiling results in this builder pass will be stored. [V] Detected 1 inputs and 1 output network tensors. [V] Total Host Persistent Memory: 256 [V] Total Device Persistent Memory: 0 [V] Total Scratch Memory: 0 [V] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 0 MiB, GPU 16 MiB [V] [BlockAssignment] Started assigning block shifts. This will take 2 steps to complete. [V] [BlockAssignment] Algorithm ShiftNTopDown took 0.024297ms to assign 2 blocks to 2 nodes requiring 1024 bytes. [V] Total Activation Memory: 1024 [V] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +0, GPU +4, now: CPU 0, GPU 4 (MiB) [I] Finished engine building in 7.949 seconds [V] Loaded engine size: 0 MiB [V] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +0, now: CPU 0, GPU 0 (MiB) [V] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +0, now: CPU 0, GPU 0 (MiB) [V] Found candidate CUDA libraries: ['/usr/local/cuda/lib64/libcudart.so', '/usr/local/cuda/lib64/libcudart.so.11.0', '/usr/local/cuda/lib64/libcudart.so.11.4.43'] [I] trt-runner-N0-10/24/24-09:44:06 ---- Inference Input(s) ---- {tensor0 [dtype=float32, shape=(4, 3, 64, 64)]} [V] trt-runner-N0-10/24/24-09:44:06 | Input metadata is: {tensor0 [dtype=float32, shape=(-1, 3, 64, 64)]} [I] trt-runner-N0-10/24/24-09:44:06 ---- Inference Output(s) ---- {tensor3 [dtype=float32, shape=(4, 3, 64, 64)]} [I] trt-runner-N0-10/24/24-09:44:06 | Completed 1 iteration(s) in 0.2778 ms | Average inference time: 0.2778 ms. [V] Successfully ran: ['onnxrt-runner-N0-10/24/24-09:44:06', 'trt-runner-N0-10/24/24-09:44:06'] [I] Accuracy Comparison | onnxrt-runner-N0-10/24/24-09:44:06 vs. trt-runner-N0-10/24/24-09:44:06 [I] Comparing Output: 'tensor3' (dtype=float32, shape=(4, 3, 64, 64)) with 'tensor3' (dtype=float32, shape=(4, 3, 64, 64)) [I] Tolerance: [abs=0.001, rel=0.001] | Checking elemwise error [I] onnxrt-runner-N0-10/24/24-09:44:06: tensor3 | Stats: mean=-0.50048, std-dev=0.2893, var=0.083692, median=-0.49797, min=-0.99999 at (3, 2, 35, 12), max=-9.7156e-06 at (3, 0, 30, 21), avg-magnitude=0.50048 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-1 , -0.9 ) | 4986 | ####################################### (-0.9 , -0.8 ) | 4912 | ####################################### (-0.8 , -0.7 ) | 4978 | ####################################### (-0.7 , -0.6 ) | 4840 | ###################################### (-0.6 , -0.5 ) | 4785 | ###################################### (-0.5 , -0.4 ) | 5011 | ######################################## (-0.4 , -0.3 ) | 4908 | ####################################### (-0.3 , -0.2 ) | 4915 | ####################################### (-0.2 , -0.1 ) | 4899 | ####################################### (-0.1 , -9.72e-06) | 4918 | ####################################### [I] trt-runner-N0-10/24/24-09:44:06: tensor3 | Stats: mean=-0.50048, std-dev=0.2893, var=0.083692, median=-0.49797, min=-0.99999 at (3, 2, 35, 12), max=-9.7156e-06 at (3, 0, 30, 21), avg-magnitude=0.50048 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-1 , -0.9 ) | 4986 | ####################################### (-0.9 , -0.8 ) | 4912 | ####################################### (-0.8 , -0.7 ) | 4978 | ####################################### (-0.7 , -0.6 ) | 4840 | ###################################### (-0.6 , -0.5 ) | 4785 | ###################################### (-0.5 , -0.4 ) | 5011 | ######################################## (-0.4 , -0.3 ) | 4908 | ####################################### (-0.3 , -0.2 ) | 4915 | ####################################### (-0.2 , -0.1 ) | 4899 | ####################################### (-0.1 , -9.72e-06) | 4918 | ####################################### [I] Error Metrics: tensor3 [I] Minimum Required Tolerance: elemwise error | [abs=0] OR [rel=0] (requirements may be lower if both abs/rel tolerances are set) [I] Absolute Difference | Stats: mean=0, std-dev=0, var=0, median=0, min=0 at (0, 0, 0, 0), max=0 at (0, 0, 0, 0), avg-magnitude=0 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-0.5, -0.4) | 0 | (-0.4, -0.3) | 0 | (-0.3, -0.2) | 0 | (-0.2, -0.1) | 0 | (-0.1, 0 ) | 0 | (0 , 0.1 ) | 49152 | ######################################## (0.1 , 0.2 ) | 0 | (0.2 , 0.3 ) | 0 | (0.3 , 0.4 ) | 0 | (0.4 , 0.5 ) | 0 | [I] Relative Difference | Stats: mean=0, std-dev=0, var=0, median=0, min=0 at (0, 0, 0, 0), max=0 at (0, 0, 0, 0), avg-magnitude=0 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-0.5, -0.4) | 0 | (-0.4, -0.3) | 0 | (-0.3, -0.2) | 0 | (-0.2, -0.1) | 0 | (-0.1, 0 ) | 0 | (0 , 0.1 ) | 49152 | ######################################## (0.1 , 0.2 ) | 0 | (0.2 , 0.3 ) | 0 | (0.3 , 0.4 ) | 0 | (0.4 , 0.5 ) | 0 | [I] PASSED | Output: 'tensor3' | Difference is within tolerance (rel=0.001, abs=0.001) [I] PASSED | All outputs matched | Outputs: ['tensor3'] [I] Accuracy Summary | onnxrt-runner-N0-10/24/24-09:44:06 vs. trt-runner-N0-10/24/24-09:44:06 | Passed: 1/1 iterations | Pass Rate: 100.0 [I] PASSED | Runtime: 12.231s | Command: /home/zhaoyidong/anaconda3/envs/zyd_env/bin/polygraphy run model-04-02.onnx --onnxrt --trt --workspace 1000000000 --atol 1e-3 --rtol 1e-3 --verbose --trt-min-shapes tensor0:[1,3,64,64] --trt-opt-shapes tensor0:[4,3,64,64] --trt-max-shapes tensor0:[16,3,64,64] --input-shapes tensor0:[4,3,64,64] [W] --workspace is deprecated and will be removed in Polygraphy 0.48.0. Use --pool-limit workspace:1000000000 instead. [I] RUNNING | Command: /home/zhaoyidong/anaconda3/envs/zyd_env/bin/polygraphy run model-04-03.onnx --onnxrt --trt --workspace 1000000000 --atol 1e-3 --rtol 1e-3 --verbose --trt-min-shapes tensor0:[1,3,64,64] --trt-opt-shapes tensor0:[4,3,64,64] --trt-max-shapes tensor0:[16,3,64,64] --input-shapes tensor0:[4,3,64,64] [V] Loaded Module: polygraphy | Version: 0.47.1 | Path: ['/home/zhaoyidong/anaconda3/envs/zyd_env/lib/python3.8/site-packages/polygraphy'] [V] Loaded extension modules: [] [V] Loaded Module: tensorrt | Version: 8.6.0 | Path: ['/home/zhaoyidong/anaconda3/envs/zyd_env/lib/python3.8/site-packages/tensorrt'] [I] Will generate inference input data according to provided TensorMetadata: {tensor0 [shape=(4, 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:18 | Activating and starting inference [V] Loaded Module: onnxruntime | Version: 1.19.0 | Path: ['/home/zhaoyidong/.local/lib/python3.8/site-packages/onnxruntime'] [I] Creating ONNX-Runtime Inference Session with providers: ['CPUExecutionProvider'] [V] Loaded Module: numpy | Version: 1.24.4 | Path: ['/home/zhaoyidong/.local/lib/python3.8/site-packages/numpy'] [V] Loading inputs from data loader [V] Generating data using numpy seed: 1 [V] Input tensor: tensor0 | Generating input data in range: [0.0, 1.0] [I] onnxrt-runner-N0-10/24/24-09:44:18 ---- Inference Input(s) ---- {tensor0 [dtype=float32, shape=(4, 3, 64, 64)]} [V] onnxrt-runner-N0-10/24/24-09:44:18 | Input metadata is: {tensor0 [dtype=float32, shape=('B', 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:18 ---- Inference Output(s) ---- {tensor3 [dtype=float32, shape=(4, 3, 64, 64)]} [I] onnxrt-runner-N0-10/24/24-09:44:18 | Completed 1 iteration(s) in 0.2246 ms | Average inference time: 0.2246 ms. [I] trt-runner-N0-10/24/24-09:44:18 | Activating and starting inference [V] [MemUsageChange] Init CUDA: CPU +14, GPU +0, now: CPU 32, GPU 848 (MiB) [V] [MemUsageChange] Init builder kernel library: CPU +1434, GPU +266, now: CPU 1542, GPU 1114 (MiB) [V] ---------------------------------------------------------------- [V] Input filename: /media/byd/disk38/media_zhaoyidong/test/OnnxGraphSurgeon/model-04-03.onnx [V] ONNX IR version: 0.0.9 [V] Opset version: 11 [V] Producer name: [V] Producer version: [V] Domain: [V] Model version: 0 [V] Doc string: [V] ---------------------------------------------------------------- [V] Setting TensorRT Optimization Profiles [V] Input tensor: tensor0 (dtype=DataType.FLOAT, shape=(-1, 3, 64, 64)) | Setting input tensor shapes to: (min=[1, 3, 64, 64], opt=[4, 3, 64, 64], max=[16, 3, 64, 64]) [I] Configuring with profiles: [Profile().add('tensor0', min=[1, 3, 64, 64], opt=[4, 3, 64, 64], max=[16, 3, 64, 64])] [I] Building engine with configuration: Flags | [] Engine Capability | EngineCapability.DEFAULT Memory Pools | [WORKSPACE: 953.67 MiB, TACTIC_DRAM: 24209.12 MiB] Tactic Sources | [CUBLAS, CUBLAS_LT, CUDNN, EDGE_MASK_CONVOLUTIONS, JIT_CONVOLUTIONS] Profiling Verbosity | ProfilingVerbosity.DETAILED Preview Features | [FASTER_DYNAMIC_SHAPES_0805, DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805] [V] Graph optimization time: 0.000438549 seconds. [V] Global timing cache in use. Profiling results in this builder pass will be stored. [V] Detected 1 inputs and 1 output network tensors. [V] Total Host Persistent Memory: 256 [V] Total Device Persistent Memory: 0 [V] Total Scratch Memory: 0 [V] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 0 MiB, GPU 16 MiB [V] [BlockAssignment] Started assigning block shifts. This will take 2 steps to complete. [V] [BlockAssignment] Algorithm ShiftNTopDown took 0.023849ms to assign 2 blocks to 2 nodes requiring 1024 bytes. [V] Total Activation Memory: 1024 [V] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +0, GPU +4, now: CPU 0, GPU 4 (MiB) [I] Finished engine building in 7.952 seconds [V] Loaded engine size: 0 MiB [V] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +0, now: CPU 0, GPU 0 (MiB) [V] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +0, now: CPU 0, GPU 0 (MiB) [V] Found candidate CUDA libraries: ['/usr/local/cuda/lib64/libcudart.so', '/usr/local/cuda/lib64/libcudart.so.11.0', '/usr/local/cuda/lib64/libcudart.so.11.4.43'] [I] trt-runner-N0-10/24/24-09:44:18 ---- Inference Input(s) ---- {tensor0 [dtype=float32, shape=(4, 3, 64, 64)]} [V] trt-runner-N0-10/24/24-09:44:18 | Input metadata is: {tensor0 [dtype=float32, shape=(-1, 3, 64, 64)]} [I] trt-runner-N0-10/24/24-09:44:18 ---- Inference Output(s) ---- {tensor3 [dtype=float32, shape=(4, 3, 64, 64)]} [I] trt-runner-N0-10/24/24-09:44:18 | Completed 1 iteration(s) in 0.303 ms | Average inference time: 0.303 ms. [V] Successfully ran: ['onnxrt-runner-N0-10/24/24-09:44:18', 'trt-runner-N0-10/24/24-09:44:18'] [I] Accuracy Comparison | onnxrt-runner-N0-10/24/24-09:44:18 vs. trt-runner-N0-10/24/24-09:44:18 [I] Comparing Output: 'tensor3' (dtype=float32, shape=(4, 3, 64, 64)) with 'tensor3' (dtype=float32, shape=(4, 3, 64, 64)) [I] Tolerance: [abs=0.001, rel=0.001] | Checking elemwise error [I] onnxrt-runner-N0-10/24/24-09:44:18: tensor3 | Stats: mean=-0.50048, std-dev=0.2893, var=0.083692, median=-0.49797, min=-0.99999 at (3, 2, 35, 12), max=-9.7156e-06 at (3, 0, 30, 21), avg-magnitude=0.50048 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-1 , -0.9 ) | 4986 | ####################################### (-0.9 , -0.8 ) | 4912 | ####################################### (-0.8 , -0.7 ) | 4978 | ####################################### (-0.7 , -0.6 ) | 4840 | ###################################### (-0.6 , -0.5 ) | 4785 | ###################################### (-0.5 , -0.4 ) | 5011 | ######################################## (-0.4 , -0.3 ) | 4908 | ####################################### (-0.3 , -0.2 ) | 4915 | ####################################### (-0.2 , -0.1 ) | 4899 | ####################################### (-0.1 , -9.72e-06) | 4918 | ####################################### [I] trt-runner-N0-10/24/24-09:44:18: tensor3 | Stats: mean=-0.50048, std-dev=0.2893, var=0.083692, median=-0.49797, min=-0.99999 at (3, 2, 35, 12), max=-9.7156e-06 at (3, 0, 30, 21), avg-magnitude=0.50048 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-1 , -0.9 ) | 4986 | ####################################### (-0.9 , -0.8 ) | 4912 | ####################################### (-0.8 , -0.7 ) | 4978 | ####################################### (-0.7 , -0.6 ) | 4840 | ###################################### (-0.6 , -0.5 ) | 4785 | ###################################### (-0.5 , -0.4 ) | 5011 | ######################################## (-0.4 , -0.3 ) | 4908 | ####################################### (-0.3 , -0.2 ) | 4915 | ####################################### (-0.2 , -0.1 ) | 4899 | ####################################### (-0.1 , -9.72e-06) | 4918 | ####################################### [I] Error Metrics: tensor3 [I] Minimum Required Tolerance: elemwise error | [abs=0] OR [rel=0] (requirements may be lower if both abs/rel tolerances are set) [I] Absolute Difference | Stats: mean=0, std-dev=0, var=0, median=0, min=0 at (0, 0, 0, 0), max=0 at (0, 0, 0, 0), avg-magnitude=0 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-0.5, -0.4) | 0 | (-0.4, -0.3) | 0 | (-0.3, -0.2) | 0 | (-0.2, -0.1) | 0 | (-0.1, 0 ) | 0 | (0 , 0.1 ) | 49152 | ######################################## (0.1 , 0.2 ) | 0 | (0.2 , 0.3 ) | 0 | (0.3 , 0.4 ) | 0 | (0.4 , 0.5 ) | 0 | [I] Relative Difference | Stats: mean=0, std-dev=0, var=0, median=0, min=0 at (0, 0, 0, 0), max=0 at (0, 0, 0, 0), avg-magnitude=0 [V] ---- Histogram ---- Bin Range | Num Elems | Visualization (-0.5, -0.4) | 0 | (-0.4, -0.3) | 0 | (-0.3, -0.2) | 0 | (-0.2, -0.1) | 0 | (-0.1, 0 ) | 0 | (0 , 0.1 ) | 49152 | ######################################## (0.1 , 0.2 ) | 0 | (0.2 , 0.3 ) | 0 | (0.3 , 0.4 ) | 0 | (0.4 , 0.5 ) | 0 | [I] PASSED | Output: 'tensor3' | Difference is within tolerance (rel=0.001, abs=0.001) [I] PASSED | All outputs matched | Outputs: ['tensor3'] [I] Accuracy Summary | onnxrt-runner-N0-10/24/24-09:44:18 vs. trt-runner-N0-10/24/24-09:44:18 | Passed: 1/1 iterations | Pass Rate: 100.0 [I] PASSED | Runtime: 12.211s | Command: /home/zhaoyidong/anaconda3/envs/zyd_env/bin/polygraphy run model-04-03.onnx --onnxrt --trt --workspace 1000000000 --atol 1e-3 --rtol 1e-3 --verbose --trt-min-shapes tensor0:[1,3,64,64] --trt-opt-shapes tensor0:[4,3,64,64] --trt-max-shapes tensor0:[16,3,64,64] --input-shapes tensor0:[4,3,64,64]
|