1 Plugin简介

网络模型就是很多层组成的,tensorRT基本上比较经典的层比如,卷积,反卷积,全连接,RNN,softmax等,在tensorRT中都是有对应的实现方式的,tensorRT是可以直接解析的。但是由于现在深度学习技术发展日新月异,各种不同结构的自定义层(比如:STN)层出不穷,所以tensorRT是不可能全部支持当前存在的所有层的。那对于这些自定义的层该怎么办?

阅读全文 »

附录:

for QDQ documents and how tensorrt process QDQ nodes, pls ref our developer guide: https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#work-with-qat-networks
And TensorRT provide a tool to do PTQ and QAT in pytorch: https://github.com/NVIDIA/TensorRT/blob/release/8.5/tools/pytorch-quantization/examples/torchvision/classification_flow.py
Besides, our team develop a sample to guide how to got best perf on Yolov7: https://github.com/NVIDIA-AI-IOT/yolo_deepstream/tree/main/yolov7_qat
And the QDQ best placement guide is here: https://github.com/NVIDIA-AI-IOT/yolo_deepstream/blob/main/yolov7_qat/doc/Guidance_of_QAT_performance_optimization.md

阅读全文 »
0%